Weak Convergence of Finite Element Approximations of Linear Stochastic Evolution Equations with Additive Noise Ii. Fully Discrete Schemes
نویسنده
چکیده
We present an abstract framework for analyzing the weak error of fully discrete approximation schemes for linear evolution equations driven by additive Gaussian noise. First, an abstract representation formula is derived for sufficiently smooth test functions. The formula is then applied to the wave equation, where the spatial approximation is done via the standard continuous finite element method and the time discretization via an I-stable rational approximation to the exponential function. It is found that the rate of weak convergence is twice that of strong convergence. Furthermore, in contrast to the parabolic case, higher order schemes in time, such as the Crank-Nicolson scheme, are worthwhile to use if the solution is not very regular. Finally we apply the theory to parabolic equations and detail a weak error estimate for the linearized Cahn-Hilliard-Cook equation as well as comment on the stochastic heat equation.
منابع مشابه
Weak Convergence of Finite Element Approximations of Linear Stochastic Evolution Equations with Additive Noise
A unified approach is given for the analysis of the weak error of spatially semidiscrete finite element methods for linear stochastic partial differential equations driven by additive noise. An error representation formula is found in an abstract setting based on the semigroup formulation of stochastic evolution equations. This is then applied to the stochastic heat, linearized Cahn-Hilliard, a...
متن کاملTHESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY On weak and strong convergence of numerical approximations of stochastic partial differential equations
This thesis is concerned with numerical approximation of linear stochastic partial differential equations driven by additive noise. In the first part, we develop a framework for the analysis of weak convergence and within this framework we analyze the stochastic heat equation, the stochastic wave equation, and the linearized stochastic Cahn-Hilliard, or the linearized Cahn-Hilliard-Cook equatio...
متن کاملContinuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative L'evy noise are considered. The drift term is assumed to be monotone nonlinear and with linear growth. Unlike other similar works, we do not impose coercivity conditions on coefficients. We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. As corollaries of ...
متن کاملFully-discrete Finite Element Approximations for a Fourth-order Linear Stochastic Parabolic Equation with Additive Space-time White Noise Ii. 2d and 3d Case
We consider an initialand Dirichlet boundaryvalue problem for a fourth-order linear stochastic parabolic equation, in two or three space dimensions, forced by an additive space-time white noise. Discretizing the space-time white noise a modeling error is introduced and a regularized fourthorder linear stochastic parabolic problem is obtained. Fully-discrete approximations to the solution of the...
متن کاملAPPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کامل